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Capture Set Computation of an Optimally Guided Missile

Tuomas Raivio*
Helsinki University of Technology, FIN-02015 Espoo, Finland

A game theoretical approach is presented for numerically computing the capture set of an optimally guided
medium-rangeair-to-air missile againsta given target. Realistic point mass models are used because long flight times
prevent simplifications such as coplanarity or constant speed target. The capture set is obtained by constructing
saddle point trajectories on its boundary, or the barrier, numerically. Instead of solving a game of kind, the
trajectories are identified by setting up an auxiliary game of degree. The necessary conditions of the auxiliary
game are shown to coincide with those of the game of kind. The game of degree is solved from systematically varied
initial states with a decomposition method that does not require setting up or solving the necessary conditions.
Examples are calculated for a generic fighter and a missile.

Introduction

MISSILE is generally designed to be faster and more agile

than any aircraft. This kinematical advantage of a missile is,
however, only temporary due to a finite and relatively short burn
time of its rocket motor. In the coasting phase, the kinetic energy
of the missile is rapidly dissipated by the aerodynamic drag force.
In contrast to a missile, an aircraft can maintain its velocity as long
as it has any fuel left. The asymmetry means that a missile does
not necessarily reach the aircraft from an arbitrary launch position,
but only from within a finite shooting range. The range depends
on many factors, such as the performance and initial energy of the
missile and target, the guidance law of the missile, the geometry
of the shoot, and, moreover, on the maneuvering of the target. The
set of launch positions that are inescapeable for the target is called
the capture set (for example, see Ref. 1), or the no-escape envelope
(Ref. 2). An estimate of the capture set is crucial, for example, in
assessing the threat related to each opponentin an air combat and,
furthermore, in considering actions to be taken. On the other hand,
the unit cost of a single missile is usually significant, which calls
for minimizing the number of premature shoots.

A worst-case estimate for the capture set with given vehicle mod-
els can be obtained by assuming that the missile uses a guidance
law that produces the largest possible capture set. The situation can
then be modeled as a pursuit-evasion game of kind (see Refs. 3 and
4), where the missile is identified with the pursuer and the aircraft
with the evader. The aim in a game of kind is to identify the set
of those initial states from which the optimally behaving pursuer
can enforce a capture against any action of the evader. This paper
presents a computational method to determine numerically solu-
tions to the game of kind for adversary missile-aircraft encounters
with realistic point mass models.

If the missile is assumed to use a known, perhaps nonoptimal,
feedback guidancelaw, the capture set can be found via optimization
of the evader’s actions. Imado and Miwa®>® and Imado’ have studied
maneuvers that lead to a largest possible miss distance against mis-
siles employing either proportional navigation (PN) or augmented
PN. Shinar and Guelman® present a similarly optimal evasion strat-
egy against a short-range PN missile with a simplified model,
whereas Ong and Pierson’ study optimal evasion of a surface-to-
air PN missile with a slightly simplified model. Although some of
the papers deal with quantitative evasion strategies, the results can
be used in assessing the largest effective shooting distance as well.

Nevertheless, a general tendency seems to be toward better guid-
ance schemes because most existing feedback laws are nonoptimal

Received 18 November 1999;revisionreceived 30 October 2000; accepted
for publication 13 November 2000. Copyright © 2001 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

*Assistant Professor, P.O. Box 1100, Systems Analysis Laboratory;
tuomas.raivio@hut.fi.

1167

with excessive target maneuvers,'®!! long launch distances,'> and
large initial deviations from the collision course.! If the guidance
law of the missile is unknown, pursuit-evasion games providea pos-
sibility to estimate the capture set under the worst-case assumption
on the guidance law of the missile.

Isaacs® providesa unified procedurefor solving a pursuit-evasion
game of kind by identifying the barrier, a surface that envelops
the initial states leading to a capture. Shinar et al.' and Green
et al.'* apply the approach of Isaacs to a simplified short-range
missile scenario. Le Menec and Bernhard'* use a similar model
for barrier computation in an expert system for air combat. To al-
low solutionsin closed form, the models assume coplanarity of the
players and constant velocity of the evader. Unfortunately, these
assumptions lose their validity as the duration of the encounter
increases.

For game models that do not allow analytical solutions, a numer-
ical solution scheme is needed. Grimm and Schaeffer’ approximate
the barrier by assuming more realistic vehicle models, but a near
optimal feedback control for the evader, and optimize the farmost
point from which a capture is still possible. Breitner et al.'>!® have
investigated the determination of the barrier with slightly simpli-
fied point mass models in the vertical plane. The approachis based
on the numerical solution of the necessary conditions of the saddle
point trajectories on the barrier.

In this paper, we considerrather realistically modeled flight vehi-
cles maneuveringin three dimensions. Instead of solving the neces-
sary conditions of a game of kind, we construct an auxiliary game
of degree with the shooting range as the payoff and show that the
open-looprepresentationof a feedback saddle point solution of this
game satisfies the necessary conditions of a barrier saddle point tra-
jectory. This is equivalent with the fact that the initial state obtained
by solving the auxiliary game of degree lies on the barrier.

Points on a submanifold of the barrier, corresponding to partly
fixed initial states of the players, are obtained by varying the initial
geometry of the encounter and by repeatedly solving the auxiliary
game of degree by a numerical decompositionmethod introducedin
Ref. 17. In Ref. 18, the method is interpreted in a bilevel program-
ming framework, the conditions for its convergence are stated, and
the method is applied to a complex missile-aircraft pursuit-evasion
game of degree. Comparison of the solutions with those obtained
via an indirect approach shows an excellent agreement. In Ref. 19,
the method is applied to a pursuit-evasion game modeling the visual
identification procedure of an unknown aircraft.

The main advantage of this method is that the solution is obtained
without explicitly stating or solving the necessary conditions of a
saddle point. Instead, two optimal control problems are solved it-
eratively using discretization and nonlinear programming, until the
saddle point has been found. Hence, the method offers an easy and
rapid treatment of complex game models. To the author’s knowl-
edge, three-dimensional capture set computation with present mod-
els has not been reported earlier.
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The paper is organized as follows: First, the dynamics of the
players are introduced. The game of kind is then formulated, the
necessary conditions of a barrier trajectory are briefly given, and
the barrier submanifoldsof interestare described. Next, the auxiliary
game of degree is formulated, and it is shown that a solution to
the auxiliary game satisfies the necessary conditions of a barrier
trajectory. The decomposition method for the game of degree is
presented before numerical examples and concluding remarks.

Game Dynamics
In the following, the missile is identified with the pursuer P and
the aircraft with the evader E. Both P and E maneuver in three
dimensions. We make the following simplifying assumptions:

1) The thrust and the drag forces, as well as the velocity vectors,
are assumed parallel with the reference line of the vehicles.

2) The lift force is assumed to be orthogonalto the velocity vector
and to point upward in the frame of reference of either vehicle.

3) The inertias of the flight vehicles are assumed negligible.

4) The coordinate frame assumes a flat Earth.

Then, the equations of motion are

X; = v; COS ¥; COS X; (1)

Y; = v; cOs y; sin y; )

hi =v; siny; 3)

. 8

yi = —(n;cospu; —cosy;) 4)
V;

g = S LS i=PE (5)
v; COSsY;

. 1 .

Vp = {Tp(t) — Dplhp,vp, M(hp,vp),npl} —gsiny, (6)
mp ()

. 1
vg = — N Tp max g, M(hg, vp)]
meg

— Dglhg,vg, M(hg, vg), ngl} — gsinyg 7

The state of the game is described by the state vector

= [Z;»,Z/E]/ =[xp,¥p, hp, ¥r. Xp, Vp, Xg, YE, hE, VE, XE, VE]

®)

The subscripts P and E refer to the pursuer and evader, respec-
tively, and the prime denotes a transpose. The state variables x;, y;,
hi, ¥i, xi» and v;, i = P, E, are the x and y coordinates, altitudes,
flight-pathangles, headingangles, and velocities of the players. The
term shooting range that is used throughout the paper refers to the
quantity {[xp(0) — xz(0)]* + [yr(0) — y£(0)]*}!/2, that is, the ini-
tial distance of the players in the xy plane.

The flight direction of the vehiclesis controlled with the load fac-
torsnp andng and thebankanglesup, g € [ —m, w]. The velocity
of E is controlled by the throttle setting nx € [0, 1] that selects the
fraction of the maximal available thrust force Ty . [7, M (h, v)],
where M is the Mach number. The pursuer’s thrust force Tp (¢) is
in general a fixed function of time that cannot be controlled. The
masses of the vehicles are denoted by m p and m and the gravita-
tional accelerationby g.

The dragforces of E and P are assumed to obey a quadratic polar
(we suppress the subscripts for brevity),

D[h, v, M(h,v),n] = Cp,[M(h,v)]Sq(h, v)

(mg)®
Sq(h, v)

where Cp, (-) and Cp, (-) are the zero drag and induced drag coeffi-
cients, S is the reference wing area, and g (h, v) = 1/20(h)v? is the
dynamic pressure. The air density o(h) and the Mach number are
computed using the international standard atmosphere.

+n*Cp, [M(h, v)] 9

The load factors np and ng cannot be chosen freely. At low ve-
locities, a large load factor requires a large angle of attack, which
results in loss of lift force and stall. At higher velocities, the magni-
tudes of the load factors are constrained by the largest accelerations
that the flight vehicles and the pilot tolerate. Here, the bounds are
approximated by the box constraints

np € [07 nP.max] (10)

ng € [07nE.max] (11)

To summarize, we require that the players’ control vectors up ()
and u g (¢) satisfy

up(t) :=[np@), up®)l € Sp := [0, np ma] X [-7, 7] (12)
up(t) = [ng), up@), ne®) € Sg := [0, N mul
x [—m, 7] x [0, 1] (13)

In addition, the players have to stay in their flight envelopes. For
the evader, the boundaries of interest are the minimum altitude con-
straint

he > hE min (14)
and the dynamic pressure constraint
q(he, ve) < qE mx (15)
The pursuer must obey the minimum altitude constraint
hp > hp min (16)

Game of Kind

Let us assume that the players, obeying Eqs. (1-7) and (12-16)
have perfect information on the state of the game. In the game of
kind, as defined by Isaacs,’ the objective of the pursueris to enforce
the capture, whereas the objective of the evader is to avoid it. A
capture occurs when z(#) enters a target set A. In this paper, A is
defined as a set of points where the distance of the playersis smaller
than a given capture radius d. The boundary d A of A is given by
the terminal manifold or capture condition

Uzp(T), ze(T)] = [xp(T) — xp (TP + [yp(T) — ye ()
+[hp(T) = hg(D)* —d> =0 (17

The capture condition also implicitly specifies the terminal time 7.
The solution of a game of kind is the set of all admissible initial
conditionsz(0) =z, from which the pursuer can achieve the capture
against any admissible control of the evader. If there exists another
set of initial states from which the pursuer cannot enforce the cap-
ture, the two sets (excluding the interior of A) are separated by a
piecewise continuouslydifferentiablehypermanifoldcalled the bar-
rier. The barrier is a collection of saddle point solution trajectories,
also termed as barrier trajectories, that satisfy

maxmindil[z(T)] =0 (18)

ug up t

(see Refs. 3 and 15). An infinitesimal change of the initial state or
a deviation of either player from the optimal strategy on the barrier
immediately results in a capture or escape. Instead of an exhaustive
search in the state space, the game of kind can be solved by de-
termining the barrier, or equivalently, the saddle point trajectories
forming it.

Notethatin the presentproblemthe functionallimits of the missile
can give rise to additional capture set boundaries. For example, a
proximity fuse may require a certain minimum launch distance.
These boundaries, however, are not explored here.
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Necessary Conditions of a Barrier Trajectory

The necessary conditions, satisfied by a barrier trajectory, consist
of the 1) equationsof motion, 2) control and state variableinequality
constraints,3) optimal controls of the players that minimaximize the
Hamiltonian of the game at each time instant, 4) adjoint differential
equations, 5) interior point conditions for the transitions from one
solutionarc to another, 6) jump conditionsfor the adjoint trajectories
at some of the transitions,7) terminal condition,and 8) initial values
of the state variables and final conditions for the adjoint variables.

The initial state is selected so that condition (18) holds. The final
conditions of the adjoint variables are given as

AT = aml[z (T9)] (19)
0z

where A(?) is the adjoint vector, « is a positive multiplier, and the
asterisk denotes a saddle point solution trajectory that results when
both players apply their optimal saddle point strategies.

For the game at hand, the condition (1) is given by Egs. (1-7),
condition(2) by Egs. (12-16), and condition(7) by Eq. (17). The ex-
plicit form of conditions (3-6) is not needed here, but can be found,
for example, in Ref. 20 and the literature cited therein. Condition
(18) gives

El[z T )]—az[z (IH1-z(T") =0 (20)

Differentiating[(-), given by Eq. (17), and substituting the relevant
components of z(¢), given by Eqgs. (1-3), result in the following
constraint for the final flight-path angles, heading angles, and the
velocities of the players (we suppress the asterisks for brevity):

Ax cosye(T)cos xg(T) + Ay cos ye(T) sin xg(T) + Ahsinyg (T)

and let x £ (0) vary. Consequently,the shootingrangeis simply given
by x»(0). Because we anticipate long solution times, transients re-
lated to the initial flight-path angle of the evader are considered
negligible, and we use

ye(0) =0 (30)

To further decrease the dimension, we fix the initial velocity and
altitude of the evader and the initial velocity of the pursuer:

ve(0) = v, he(0) = hg o 3D
vp(0) = Up.o (32)

In the computations they will be treated as parameters. Finally, we
let the pursuer select its initial flight-path angle and heading angle
freely,

yr(0) =y (0) (33)

xp(0) = x(0) (34)

Conventionally,one would assume that at the moment of the launch
the target has to be in the visual field of the missile’s sensor mech-
anisms, dictated by the initial direction of the missile. This would
give rise to an initial condition of the form

klxp(0), hp(0), yr(0), xr (0)] =0 (35)

Nevertheless, because most long-range missiles nowadays can
download midcourse navigation information from an aircraft that is

2D

vp(T) = ve(T)

Ax cosyp(T)cos xp(T) + Aycosyp(T)sin xp(T) + Ahsinyp(T)

where Ax=xp(T)—x(T), Ay=yp(T)—ye(T), and Ah=
hp(T)— hg(T). The final conditions of the adjoint variables (19)
yield
My (T%) = = (T) = 2a[x5(T*) —x5(TH]  (22)
Ay (T) = =2, (T) = 20y (T) — y5(TH]  (23)
D (T*) = = (T%) = 2a[W(T*) = Hp(TH)]  (24)

In addition,

hop (T = Ay (TH) =0 (25)
A, (T*) =2, (T*) =0 (26)
Ay (T*) = 4,y (T =0 27

because the corresponding state variables are free at t = T*.

Barrier Submanifolds

In principle, the barrier could be identified by integrating the nec-
essary conditions(1-8) backwardin time, starting from the transver-
sality conditions (22-27) and every point satisfying condition (18)
on dA (Ref. 3). Nevertheless, the barrier is an 11-dimensional hy-
permanifold in the 12-dimensionalstate space, and its construction
as such would be a formidable task. Besides, many initial states, like
the ones where the pursueris initially heading away from the evader,
hardly bear any practical significance. Therefore, we concentrate on
a submanifold of the barrier.

Because the atmosphereis assumed laterally homogenous, we fix

xg(0) = y£(0) =0 (28)
For the same reason, we can fix

yr(0)=0 (29)

even not necessarily the launching one, constraining is considered
unnecessary. The additional necessary conditions corresponding to
Eqgs. (33) and (34) are

Ayp(0) =24,,(0)=0 (36)

The resulting submanifold of the barrier lies in the intersection of
the hyperplanes (28-32) and the manifolds (33) and (34) and is two
dimensional. It specifies the maximal shootingrange x3 (0) > O as a
functionofthe initial geometry describedby & » (0) and x (0). Tode-
termine the x} (0) correspondingto /15 (0) =hp o and x£(0) = xk,0,
one could, for example, solve the multipoint boundary value prob-
lem resulting from the necessary conditions (1-8) numerically (see
Refs. 15 and 16). In the following, however, we develop an alterna-
tive approach that utilizes the decomposition method described in
Ref. 17.

Auxiliary Game of Degree
That the total impulse of the missile is finite allows one to set up
a game of degree with the shooting range as the payoff. Let us, in
addition to Eqs. (28-32), fix also hp(0) =hp o and xz(0) = xr.o-
Consider then the game

—«&(T) (37

max min
ug up.xp(0),yp(0),xp(0)

Zp =fp@p,up,t)
zp(0) = [xp(0), 0, p g, vpo, ¥p(0), xp(0)] (38)

zg = fe(zg, ug), 2(0) =[0,0,hg g, vgo, 0, xgol (39)

§=0, £(0) = xp(0) (40)
up(t) € Sg, up(t) € Sp 41)

hE(t) = hE,mim hP(t) = hP.min (42)
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qlhe @), vE(D] = Gmax 43)
Hz(T)] =0 (44)

The payoffis alwaysnegativebecausethe scalingfactor is positive.
The dummy state £(7) is introduced to transform the initial state
payoftinto a theoretically more sound terminal state cost function.
The absolute value of £(T) equals the shooting range. The state
equations (38) and (39) are as in Egs. (1-7).

‘We now postulate that a solution that satisfies the necessary con-
ditions of a saddle point of the auxiliary game of degree also satis-
fies the necessary conditions of a barrier trajectory. Checking this is
straightforwardfor the items 1-7 on the listin the precedingsection,
assuming that the switching structure of the solution of the game of
degree coincides with that of the barrier trajectory associated with
the computed initial state. For item 8, we note the following. The
final conditions of the adjoint variables in the game of degree are

tp (T) = =iy (T) = 2B[%p (T) — %(T)] (45)
1y, (T) = —puy (T) = 2155 (T) = ¥5(T)] (46)
g (T) = —pun (T) = 2B1hp(T) = hyp(T)] 47)
top (T) = o (T) =0 (48)

typ (T) = e (T) =0 (49)

tp (T) =y (T) =0 (50)

ne(T) = —k (51

where pu(?) is the adjoint vector and (7) refers to the solution of the
game of degree. Conditions (45-50) coincide with conditions (22—
27). Obviously, ., (0) = 1, (0) =0, which yields condition (36).
Note that condition (51) is not totally decoupled; by the use of
calculus of variations, it is rather easy to show that the initial
condition (40) implies ¢ (0) = —puy, (0). Because both g (¢) and
My (2) are constant, pg (T) =—k =—p,,(T). On the other hand,
Wyp (T) should satisfy condition (45). Nevertheless, as long as
Xp(T) > xp(T), then k > 0 can be selected freely without affect-
ing the solution. In the computations of this paper the assumption
holds.
Finally, substituting Eqs. (45-51) to the necessary condition

HZT), ip(T), g (T), (T), E(T), T
= (D plzp(T), ap(T), TV, felze(T), g (T
+ue(T)-0=0 (52)

of the game of degree and canceling the common factor >0
show that z(T') satisfies condition(21). This concludesthat Z(),t €
[0, T, satisfies the necessary conditionsof a barriertrajectory.Espe-
cially the initial states Z,(0) =[Xp(0), 0, hpg, vVpo, Yp(0), xp (0]
and z;(0)=10,0, hg o, Vg0, 0, x£0] belong to the barrier. Thus,
the maximal shooting range x7 (0) corresponding to 7 ,(0) =hp
and x£(0) = xg.o on the barrier submanifold defined earlieris given
by X (0). Parts of the submanifold can now be produced by system-
atically varying hp (0) and x(0) and solving the game of degree
(37- 44) repeatedly. Different submanifoldsare obtained by varying
Vg0, hE o, and vp o in Egs. (31) and (32). In this way, for example,
the effect of the initial velocity of the evader on the shooting range
can be assessed.

Solving the Game of Degree

The approachjust presented is computationallyintensivebecause
the auxiliary game of degree has to be solved numerous times from
differentinitial conditions.Indirect methodsthatsolve the necessary
conditions of a saddle point solution could be used, but the small
domain of convergence and the need to specify the sequence of
unconstrained, constrained, and singular solution arcs correctly in

advance cause practical problems. Furthermore, the work needed in
deriving the necessary conditions should not be underestimated (for
an example, see Ref. 20).

A new solution method is presented in Ref. 17. It is based on
the fact that, for games where the payoff is terminal and the state
equation and the control as well as state variable inequality con-
straints are separable in players’ control and state variables, the
necessary conditions are coupled only at # =7 through the payoff
and the capture condition. Obviously, the auxiliary game of the pre-
ceding section falls into this category. In the method, the solution of
the necessary conditions is decomposed into two subproblems that
are solved iteratively. The subproblems are optimal control prob-
lems, and in the end of the iteration, the necessary optimality con-
ditions of these problems coincide with the necessary conditions of
the saddle point solution.

The subproblems can be solved with any direct or indirect trajec-
tory optimization approach. The actual motivation behind the de-
composition is, however, that with a suitable discretization scheme
the subproblems can be transformed into nonlinear programming
problems. For a review of different discretization schemes, see
Ref. 21. The necessary conditions are then not directly involved
in the solution process, but the solution, together with the Lagrange
multipliers of the problem, approximates the control, state, and ad-
joint trajectories with an accuracy that depends on the discretization
grid and the order of the discretizationmethod.

In the following we describe the method when applied to the
preceding auxiliary game. From the computational point of view,
the dummy state variable & is void. For clarity, we eliminate it and
consider directly the minimaximization of xp (0).

Assume that the pursuit-evasion game admits a saddle point in
feedbackstrategies. Then, an open-looprepresentationof a feedback
saddle point trajectory can be computed by solving the maxmin
problem

max min —xp(0) (53)

ug up.xp(0),yp(0),xp(0)
Zp =fp@p,up,t)
zp(0) = [xp(0), 0, hp g, vp o, ¥p(0), xp(O)] (54)

2g =fr@g, ug), zp(0)=[0,0, hg o, vgo,0, XE.O]/ (55)

up(t) € Sg, up(t) € Sp (56)
he(t) = he min, hp(®) = hpmin (57
qlhe®), vE(D)] = Gmax (58)
Hzp(T),ze(T)] =0 (59)

To obtain the maxmin solution, we set up an iteration, where the
pursuer’s minimization problem is solved with a fixed current tra-
jectory of the evader. The evader’s trajectory is then improved by a
feasible step, and the process is repeated until convergence.

Let us first consider the pursuer’s minimization problem

—xp(0) (60)

min
up.xp(0),yp(0),xp0).T

zp =fr@p,up, 1)

z2p(0) =[xp(0),0, hp g, vpo, vp(0), xp(0)] (61)
up(t) € Sp, hp() = hpmin (62)
1[zp(T),25(T)] =0 (63)

wherez% (t),t > Oisafixedtrajectoryof theevaderand!/(-) is defined
as in Eq. (17). Let the solution trajectory be zp (t) and the final time
T and denote the capture point z%(T) by e. Now, zp(t) is also an
optimal trajectory for the problem where the evader’s trajectory is
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replaced by the fixed point e and the final time is fixed to T. In the
neighborhoodof(e, T') define

Ve, T)= =xp©) |z2p =fr@p,up,1),t€[0,T],

mi
up.xp©),yp(0),xr(0)

zp(0) = [xp(0), 0, 71p 0, vp o, ¥p(0),
xp(O)], up(t) € Sp, hp(t) = hp min,
lizp(T), e] = 0} (64)

The maxmin problem (37- 44) is equivalentto maximizing V (e, T)
subjectto the evader’s constraints. This problem is difficult to solve
because V(-) cannot be expressed analytically. We, therefore, ap-
proximate the solution that maximizes Eq. (64) with a solution to the
problem where the final time is fixed to 7', and V (e, T') is linearized
in the neighborhood of e. This problem can be stated as

v _ _ _ N
max E(e, T)(ze(T) —e] (65)

z2g = fr@g, ug), te€[0,T], ze(0) =zgy (66)

up(r) € Sg, he®) = hig min, qlhe(®), ve()] < qg max

(67)

where the gradientis a row vector. Basic sensitivity results applied
to V (see Refs. 17 and 18 and the references cited therein) imply
that the gradient of V' with respect to e at (e, T) is given by the
analytical expression

DY@, Ty = Z2x0(0) + Gtz (T), 8] = Gz (), 2]
de de de de
(68)

where « is the Lagrange multiplier associated with the capture
condition (63) in the solution of the minimization problem (60-63).
In this game,

9 - e
51[ZP(T), el = =2{[xp(T) = X (D)), [yp(T) = (D)1,

(hp(T) = he(T)TY (69)

Denote the solution trajectory of Eqs.(65-67) by z'E(t), t €0, T].
Alsodenote T' =T One iterationis completed by extendingzL, (1),
for example, linearly as

2 (1), t<T!

2, (THY +z2,(TH@E —T") t>T! (70)

2p(1) = {

The extension is needed because, in general, if convergence has
not yet been achieved, 7%+ can be larger than T*. The extended
solutionis theninsertedto the minimization problem (60-63), which
is solved anew to locate the new capture point and to compute the
linear approximation of V (-). The iteration is continued until the
relative change in V (-) becomes less than a prescribed value. To
summarize, the iteration proceeds as follows:

1) Fix aninitial trajectoryz% (7), > 0 of evaderand solve problem
(60-63). Obtainzp(t), e, T, and a. Set k := 1.

2) Solve problem (65-67) using e, T, and & to obtain z"E ).

3) Insert the extended solution z¥ (1) of problem (65-67) into
Egs. (60-63) and solve to obtain z,(t), e, T, and «. If the rela-
tive change of the payoff is smaller than the prescribed accuracy,
terminate. Otherwise, set k : =k 4 1 and go to step 2.

In Ref. 17, it is shown that when the method converges, the solu-
tionsatisfies the necessary conditionsof an open-looprepresentation
of a feedback saddle point on regular solution arcs and on such sin-
gular arcs that involve only one of the players. There are, however,
certain singular surfaces, such as the equivocal surface (see Ref. 3),
that involve both players and couple the necessary conditions be-
fore the termination of the game. These surfaces require additional

necessary conditions to be satisfied that cannot be expressed as the
optimality conditionsof the subproblems.The maxmin solutionthen
differs from the saddle point solution (see Ref. 17 and the discussion
in Ref. 18). Although it is in practice impossible to prove exactly,
we can rather safely assume that the solution of the present game
does not involve such surfaces.

In the approach just described, the saddle point problem is first
decomposed, and the subproblems are discretized. In Ref. 18, the
saddle point problem s first discretized and then solved using a fea-
sible direction method. The discretized problem s identified with a
bilevel programming problem (see Ref. 22 and the references cited
in Ref. 18) with the maximization as the upper level problem and
the minimizationas the lower level problem, and a feasible direction
method with generally established convergence conditions is pro-
posed for solving the bilevel programming problem. The feasible
direction method turns out to be almost identical with the decompo-
sition method presented here, which provides an alternative inter-
pretation and conditions for the convergence of the decomposition
method as well.

Numerical Examples

In the following, we compute parts of the submanifolds of the
barrier corresponding to two initial altitudes and velocities of the
evader and one initial velocity of the pursuer. We use a generic
medium-rangeair-to-airmissile model. The thrustforce of therocket
motor is given by

Ts, 0<t<3s
Tp(t) =3 T, 3<t<15s (71)
0, t>15s

Consequently, the mass of the missile first decreases piecewise lin-
early and remains then constant. The mass of the evader is as-
sumed constant. The drag coefficients of both vehicles are approxi-
mated by rational polynomials on the basis of realistic tabular data.
The data describing T max[fg, M (hg, ve)] is approximated by a
two-dimensional polynomial. We set ng yu =7, 1 p max = 20, and
q £ max = 80 kPa. The evader’s data used in the numerical examples
represent a high-performance fighter aircraft. For details, see liter-
ature cited in Ref. 20.

The subproblemsof the method presentedin the preceding section
are discretized using direct collocation~% In this approach, the
state trajectories between the gridpoints are approximated by piece-
wise cubic polynomials. The control functions are approximated
piecewise linearly. The state trajectories are required to be contin-
uous and smooth in their first derivative. In addition, in the middle
of each interval, the slopes of the state trajectories are required to
coincide with the state rate at the same point.

The evader’s problem (65-67) is discretized using 40 equidis-
tant gridpoints. The discretization interval is then less than 5 s in
every problem, which is considered sufficient on the basis of the
experience reported in Ref. 25. The pursuer’s problem (60-63) is
discretizedusing 5, 10, and 25 points for the stages of the missile, re-
spectively. The states and the controls are required to be continuous
at t =3 and 15 s. With this grid, the maximal discretization inter-
val during the last phase is approximately 7 s, which is considered
sufficiently small for a missile gliding near a quasi-stationary state.
The tested denser discretizationgrids increase the computation time
but do not produce significantly different results.

The resulting nonlinear programming subproblems are solved
using the NPSOL?® library subroutine, which is a versatile imple-
mentation of sequential quadratic programming (for example, see
Ref. 27). The use of the Lagrangian merit function substantially
improves the convergence of the method from an almost arbitrary
infeasibleinitial point. To bring the decision variablesinto the same
magnitude, the discrete state and control variables of the subprob-
lems are scaled with the maximal value of the respective variable
appearing in the initial guess.

In each example, the pursuer’s initial velocity vp is fixed to
300 m/s. The pursuer’s initial altitude is varied from hp o= hp i
to 9000 m in 1000-m intervals. The initial heading angle of the
evader is varied from g (=0 to 180 deg in 18-deg intervals. Here
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0 deg means a head on shoot and 180 deg a tail shoot. Note that the
situation is symmetrical for xz o > 180 deg.

In the selected discretizationgrid, 10 x 11 =110 game problems
are solved for each combination of &y o, v, and vp . The itera-
tion is terminated once the relative change in the shooting distance
becomes less than 0.5%.

Example 1

First, we study a case where the evader initially flies at hy o=
3000 m with the initial velocity vg o =400 m/s in level flight. The
shooting ranges corresponding to differentinitial altitudes and lat-
eral aspect angles of the pursuer are shown in Fig. 1. Because of the
assumed lateral homogeneity of the atmosphere, rotating the initial
heading angle of the evader with a fixed initial position of the pur-
suer is equivalent to rotating the initial position of the pursuer with
a fixed initial direction of the evader. In Fig. 1, the evader’s initial
directionis fixed along the positive x axis. Missiles fired frominside
the shown manifold with the specified initial velocity will reach the
aircraft regardless of the aircraft’s actions, whereas missiles fired
from outside do not reach an optimally escaping aircraft.

Barriersaddlepointtrajectoriesofthe players,relatedto the points
labeled A, B, and C in Fig. 1, are presented in Figs. 2, 3, and 4,
respectively. The corresponding loadfactors and evader’s throttle
settings are presentedin Fig. 5. At point A, the pursueris initially at
hp o =50 m directly behind the evader, and the solution trajectories

Altitude, km

60 o

X range, km y range, km

Fig. 1 Visualization of the submanifold of the barrier computed in
Example 1.

Altitude, km

Now s Ol N

-

8=
3

X range, km

Fig. 2 Barrier trajectories of the players related to point A in Fig. 1
(——) and the convergence history of the computation (- - -); thick line
represents part of the barrier submanifold.
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stay in the vertical plane. The evader starts in level flight, but the
dynamic pressure constraintsoon forces the evader to climb. Before
the capture occurs, the controls of the evader turn singular, which is
indicated by the throttle setting that receives values less than 1 (see
Fig. 5a). The pursuer climbs to the maximal altitude of 4.6 km and
capturesthe evader at the altitude of 3.7 km. The initial constellation
isdisadvantageousfor the pursuerbecausethe shootingrangeis only
7.4 km. The final time is 36.7 s.

Figure 2 also shows the convergence history of the solution
method. The initial guess of the evader’s trajectory is a straightline
in the initial altitude. Because the trajectory violates the dynamic
pressureconstraint,the optimal shootingrange of the pursueragainst
this trajectory s shorter than in the other solutions. After the first it-
eration,the maximal shootingrange decreasesmonotonically within
the numerical accuracy. A feasible initial estimate of the evader’s
trajectory could be constructed by guessing the components of the
gradient of V (-) and solving problem (65- 67) once.

The 0.5% accuracy in the shooting range is achieved after four
iterations, but to demonstrate the convergence we have in this ex-
ample used the accuracy of 0.005%, which is achieved after nine
iterations. Initiating the method with differentinitial trajectories for
the evader leads to the same solution. The number of iterations does
not heavily depend on the initial guess.

At point B, the pursuer’s initial altitude is & p o = 3000 m, and it
is 126 deg to the left of the evader’s initial direction. The evader
first turns away from the pursuer and climbs to avoid violating the
dynamic pressure constraint and to decrease the drag force. Again,
the controlsturnsingularin the end (Fig. 5b), butthe relative duration
of the singulararc is shorter. During the first 10 s, the bank angle of
the evader (not plotted) is around 60 deg and decreases then in the
next 10 s gradually to zero. The pursuer selects its initial headingin
such a way that no lateral turning is needed, and the optimal bank
angle is zero.

The pursuer climbs to the maximum altitude of 24.9 km. On one
hand, climbing brings the pursuer into a thin atmosphere where the
drag force is smaller than in lower altitudes. On the other hand,
climbing and trading kinetic energy into potential energy seems to
be the optimal way to reach the velocity of the maximal glide ratio
for the coasting phase. Qualitatively similar range optimal glide
trajectoriesfor an aircraft with an engine fault have been obtainedin
Ref. 28. The initial position B is more advantageousfor the pursuer
than the position A because the shootingrange grows to 21 km and
the duration of the encounter to 145 s.

Point Creferstoaheadonshootfrom# p o = 9 km. The initial state
is on the dispersal surface of the evader, who must instantaneously
decide whether to turn left or right. Here, the evader turns right, al-
most 180 deg, and climbs simultaneously. The pursuerclimbs to the
altitude of more than 34 km and then glidesdown to 10.5 km, where
the capture occurs, flying altogether almost 150 km. The optimal
bank angles of the players are similar to the preceding solution. Be-
cause of the tactically superior position of the pursuer, the shooting
range is 64.9 km, and the duration of the encounteris 182 s.

A plot of the maximal shooting ranges correspondingto the pur-
suer’s differentinitial altitudes and directionsof shootis presentedin

20 X range, km

Fig. 3 Barrier trajectories related to point B in Fig. 1, together with the projections in the xy plane.
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Fig. 4 Barrier trajectories related to point C in Fig. 1, together with the projections in the xy plane.
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Fig.5 Barrier saddle point loadfactors of the players (——) and the throttle setting of the evader (- - -) along trajectories related to points A, B, and

Cin Fig. 1.

Fig. 6. The earlier discussed points A, B, and C are also shown. The
effect of the atmosphere is visible in the lower part of the manifold.
When the pursuer starts from a low altitude, it stays in the denser
part of the atmosphere during the flight. As a result, the maximal
shootingrange is relatively small. However, when the initial altitude
of the pursuer increases, it can reach thinner atmosphere, and the
maximal shooting range grows almost linearly with the initial total
energy of the pursuer.

When the pursueris initially in a low altitude, the maximal shoot-
ing range clearly depends on the direction of the shoot. In higher
initial altitudes, however, the dependenceis alleviated. An intuitive
explanationis as follows. In every case, and especially in a head on
shoot, the evader’s optimal strategy is to turn away from the pursuer
regardless of the pursuer’s initial altitude, even though the turn itself
does not increase the distance to the pursuer. The duration of the
turn is roughly constant, whereas the terminal time increases with
the initial altitude of the pursuer. Thus, with the shooting directions
in front of the evader (heading angles near 0 deg) and with low initial
altitudes of the pursuer, the evader uses most of the available flight
time in turning, whereas in solutions corresponding to high initial

altitudes of the pursuer, the fraction of the total time the evaderuses
for turning is smaller.

In addition to turning away from the pursuer, the evader also
ascendsto avoidthe dynamic pressureconstraintthatbecomesactive
toward the end of the encounter. The pursuer’s strategy is to climb
for the reasons discussed earlier. Consequently, the optimal initial
flight-path angle of the pursuer is often more than 60 deg. Some
comparisons indicate that constraining the initial flight-path angle
and heading angle such that the targetis required to be within a cone
of visibility with an opening angle of 35 deg shows a decrease of the
magnitude of 10% in the maximal shooting range. The differenceis
mainly due to the momentary but large loadfactorneededto steer the
pursuer upward and laterally toward the final position of the evader.
Thus, the significance of the free initial direction of the pursuer
seems to be noteworthy.

Example 2

In example 2, the initial velocity of the evader is decreased to
250 m/s. The maximal shooting range is presented as a function of
the pursuer’s initial altitude and the direction of shootin Fig. 7. Note
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Fig.6 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 1; evader lies in the origin and flies
to the right.

90

80

=9,000 m

h, 0}

240 300

270

Fig.7 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 2.

that with higherinitial altitudes of the pursuer, the maximal shooting
range grows less than 10% on the average when compared to the
preceding example. One would expect that the lower initial energy
ofthe evaderwould be more advantageousfor the pursuer. The thrust
excess, thatis, the difference of the thrustforce and the drag force of
the evaderis, however, larger with lower velocities,and acceleration
to almost the same velocity as with the higher initial velocity takes
only a fraction of the terminal time. The velocity difference, thus,
becomes almost compensated in the first moments of the flight. In
the lower parts of the barrier submanifold, the difference is larger
because the acceleration takes more than half of the total flight
time. On the other hand, the largest possible shooting range for a
head-on shootis smaller than in the precedingexample. The turning
performance of the evader is better at the lower initial velocity.

Example 3
Finally, we compute the maximal shootingranges for an evader at
h .o =6000m with the initial velocity v o = 400 m/s. The maximal

270

Fig.8 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 3.

shooting ranges are shown as functions of the pursuer’s initial alti-
tude and the direction of shoot in Fig. 8. The higher initial altitude
of the evader reduces the maximal shooting ranges. In the pursuer’s
initial altitudes of 2000-3000 m, the change is approximately 40%
compared to the first example. In altitudes 4000 m and above, the
difference varies between 10 and 15%, with 13% on the average.

Conclusions

We have presented a method to compute the capture set of a mis-
sile with given vehicle models under the assumption that both the
missile and the aircraft behave in the best possible way. Instead
of solving the necessary conditions of the corresponding game of
kind, an equivalent game of degree is set up. A submanifold of the
barrier in three dimensions is constructed by solving the game of
degree repeatedly with suitably discretized initial states using a de-
composition method presented earlier. The necessary conditions of
the game need not be solved explicitly. The use of discretizationand
nonlinear programming in solving the subproblems of the decom-
position offers a tradeoff possibility between accuracy and solution
time. A coarse solution with only few discretization points can be
obtained fast for inspection, and, if desired, can be improved by
adding of reallocatingthe discretizationpoints. More efficient com-
putation could be achieved with optimization algorithms designed
especially for sparse problems and possibly parallelization.

The presented demonstrations show, as expected, that the maxi-
mal shootingrange depends on the altitude difference of the players
and, through the properties of the atmosphere, also on the absolute
initial altitude of the pursuer. The shape of the lower part of the no
escape envelope depends largely on the direction of the shoot, but
in the upper part this dependence is diluted.

The computations indicate that the shooting range is rather in-
sensitive to small changes in the evader’s trajectory. On one hand,
this means that a successful implementation of the evasive maneu-
vers is not crucially affected by small variations. On the other hand,
because the maximization in the presented decomposition method
is essentially a first-order approach, it may suffer from convergence
difficulties near such a flat optimum. Nonetheless, as pointed out in
Ref. 18, the maximization problem can be solved using any method
of nonlinear programming, including second-orderalgorithms. An-
other possibility to obtain more accurateresults is to initiate an indi-
rect solution method with the obtained solution. The initial estimate
of the adjoint variables can be calculated using the Lagrange multi-
pliers of the converged subproblems.

The approach provides a way to assess the technical perfor-
mance of the vehiclesin the worst possible case, which is important
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especially if the guidance law of the missile is unknown. It should
be noted, however, that in this paper the information pattern is un-
modeled and assumed perfect. Usually it is the aircraft that has
problems in receiving information on the missile. For example, de-
tecting a missile launch is a challenging task. If a missile can hide
itself, the largest possible shooting range thus becomes larger.

Acknowledgment

This work has been carried out in collaboration with the Finnish
Air Force.

References

I'Shinar, J., Guelman, M., and Green, A., “An Optimal Guidance Law for
a Planar Pursuit-Evasion Game of Kind,” Computers and Mathematics with
Applications, Vol. 18, No. 1-3, 1989, pp. 35-44.

2Grimm, W., and Schaeffer, J., ”Optimal Launch Conditions on the No-
Escape Envelope,” Computers and Mathematics with Applications, Vol. 18,
No. 1-3, 1989, pp. 45-59.

3Isaacs, R., Differential Games, reprint, Krieger, New York, 1975.

4Blacquire, A., Quantitative and Qualitative Games, Academic, New
York, 1969, Chap. 6.

5Imado, F., and Miwa, S., “Fighter Evasive Maneuvers Against Propor-
tional Navigation Missile,” Journal of Aircraft, Vol. 23, No. 11, 1986, pp.
825-830.

®Imado, F., and Miwa, S., “Fighter Evasive Boundaries Against Missiles,”
Computers and Mathematics with Applications, Vol. 18, No. 1-3, 1989, pp.
1-14.

"Imado, F., “Some Aspects of a Realistic Three-Dimensional Pursuit-
Evasion Game,” Journal of Guidance, Control, and Dynamics, Vol.16,No. 2,
1993, pp. 289-293.

8Shinar, J., and Guelman, M., "New Results in Optimal Missile Avoidance
Analysis,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 5,
1994, pp. 897-902.

9Ong, S., and Pierson, B., “Optimal Planar Evasive Aircraft Maneuvers
Against Proportional Navigation Missiles,” Journal of Guidance, Control,
and Dynamics, Vol. 19, No. 6, 1996, pp. 1210-1215.

10Zarchan, P., “Proportional Navigation and Weaving Targets,” Journal
of Guidance, Control, and Dynamics, Vol. 18, No. 8, 1995, pp. 969-974.

'Imado, F., and Miwa, S., “Missile Guidance Algorithm Against High-
g Barrel Roll Maneuvers,” Journal of Guidance, Control, and Dynamics,
Vol. 17, No. 1, 1994, pp. 123-128.

2Kumar, R., Seywald, H., and CIliff, E., “Near-Optimal Three Dimen-
sional Air-to-Air Missile Guidance Against Maneuvering Target,” Journal
of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 457-464.

13Green, A., Shinar, J., and Guelman, M., “Game Optimal Guidance Law
Synthesis for Short Range Missiles,” Journal of Guidance, Control, and
Dynamics, Vol. 15, No. 1, 1992, pp. 191-197.

14 e Menec, S., and Bernhard, P., "Decision Support System for Medium
Range Aerial Duels Combining Elements of Pursuit-Evasion Game Solu-
tions with Al Techniques,” New Trends in Dynamic Games and Applications,
edited by G. J. Olsder, Birkhauser, Boston, 1995, pp. 207-226.

15Breitner, M., Pesch, H., and Grimm, W., “Complex Differential Games
of Pursuit-Evasion Type with State Constraints, Part 1: Necessary Condi-
tions for Optimal Open-Loop Strategies,” Journal of Optimization Theory
and Applications, Vol. 78, No. 3, 1993, pp. 419-441.

16Breitner, M., Pesch, H., and Grimm, W., “Complex Differential Games
of Pursuit-Evasion Type with State Constraints, Part 2: Numerical Compu-
tation of Optimal Open-Loop Strategies,” Journal of Optimization Theory
and Applications, Vol. 78, No. 3, 1993, pp. 443-463.

7Raivio, T., and Ehtamo, H., “On Numerical Solution of a Class of
Pursuit-Evasion Games,” Annals of the International Society of Dynamic
Games, Vol. 5, 2000, pp. 177-201.

18Ehtamo, H., and Raivio, T., “On Applied Nonlinear and Bilevel Pro-
gramming for Pursuit-Evasion Games,” Journal of Optimization Theory and
Applications (to be published).

19Raivio, T., and Ehtamo, H., ”Visual Aircraft Identification as a Pursuit-
Evasion Game,” Journal of Guidance, Control, and Dynamics, Vol.23,No. 4,
2000, pp. 701-708.

20Lachner, R., Breitner, M., and Pesch, H. J., “Three-Dimensional Air
Combat: Numerical Solution of Complex Differential Games,” Annals
of the International Society of Dynamic Games, Vol. 3, 1996, pp. 165-
190.

21Betts, J., “Survey of Numerical Methods for Trajectory Optimization,”
Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp.
193-207.

22Shimitsu, K., Ishizuka, Y., and Bard, J., Nondifferentiable and Two-
Level Mathematical Programming, Kluwer Academic, Boston, 1997,
Chap. 9.

23Hargraves, C.R., and Paris, S. W., “Direct Trajectory Optimization Us-
ing Nonlinear Programming and Collocation,” Journal of Guidance, Control,
and Dynamics, Vol. 10, No. 4, 1987, pp. 338-342.

24yon Stryk, O., and Bulirsch, R., “Direct and Indirect Methods for Tra-
jectory Optimization,” Annals of Operations Research, Vol. 37, 1992, pp.
357-373.

25Raivio, T., Ehtamo, H., and Hamaldinen, R. P., “Aircraft Trajectory
Optimization Using Nonlinear Programming,” System Modeling and Opti-
mization, edited by J. Dolezal and J. Fidler, Chapman and Hall, London,
1996, pp. 435-441.

20Gill, P, Murray, W., Saunders, M., and Wright, M., “User’s Guide
for NPSOL 4.0: A Fortran Package for Nonlinear Programming,” Stanford
Univ., Rept. SOL 86-4, Stanford, CA, 1986.

27Bertsekas, D., Nonlinear Programming., Athena Scientific, Belmont,
MA, 1995, Chap. 4.

28Hoffren, J., and Raivio, T., “Optimal Maneuvering After Engine Fail-
ure,” Proceedings of the 2000 AIAA Flight Mechanics Conference, AIAA,
Reston, VA, 2000, pp. 277-287.



