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Capture Set Computation of an Optimally Guided Missile

Tuomas Raivio¤

Helsinki University of Technology, FIN-02015 Espoo, Finland

A game theoretical approach is presented for numerically computing the capture set of an optimally guided
medium-rangeair-to-airmissile againsta given target.Realistic pointmassmodelsareused because long� ight times
prevent simpli� cations such as coplanarity or constant speed target. The capture set is obtained by constructing
saddle point trajectories on its boundary, or the barrier, numerically. Instead of solving a game of kind, the
trajectories are identi� ed by setting up an auxiliary game of degree. The necessary conditions of the auxiliary
game are shown to coincide with those of the game of kind. The game of degree is solved from systematically varied
initial states with a decomposition method that does not require setting up or solving the necessary conditions.
Examples are calculated for a generic � ghter and a missile.

Introduction

A MISSILE is generally designed to be faster and more agile
than any aircraft. This kinematical advantage of a missile is,

however, only temporary due to a � nite and relatively short burn
time of its rocket motor. In the coasting phase, the kinetic energy
of the missile is rapidly dissipated by the aerodynamic drag force.
In contrast to a missile, an aircraft can maintain its velocity as long
as it has any fuel left. The asymmetry means that a missile does
not necessarily reach the aircraft from an arbitrary launch position,
but only from within a � nite shooting range. The range depends
on many factors, such as the performance and initial energy of the
missile and target, the guidance law of the missile, the geometry
of the shoot, and, moreover, on the maneuvering of the target. The
set of launch positions that are inescapeable for the target is called
the capture set (for example, see Ref. 1), or the no-escape envelope
(Ref. 2). An estimate of the capture set is crucial, for example, in
assessing the threat related to each opponent in an air combat and,
furthermore, in considering actions to be taken. On the other hand,
the unit cost of a single missile is usually signi� cant, which calls
for minimizing the number of premature shoots.

A worst-caseestimate for the capture set with given vehiclemod-
els can be obtained by assuming that the missile uses a guidance
law that produces the largest possible capture set. The situation can
then be modeled as a pursuit– evasiongame of kind (see Refs. 3 and
4), where the missile is identi� ed with the pursuer and the aircraft
with the evader. The aim in a game of kind is to identify the set
of those initial states from which the optimally behaving pursuer
can enforce a capture against any action of the evader. This paper
presents a computational method to determine numerically solu-
tions to the game of kind for adversary missile–aircraft encounters
with realistic point mass models.

If the missile is assumed to use a known, perhaps nonoptimal,
feedbackguidancelaw, the captureset canbe foundvia optimization
of the evader’s actions. Imado and Miwa5;6 and Imado7 have studied
maneuvers that lead to a largest possible miss distance against mis-
siles employing either proportional navigation (PN) or augmented
PN. Shinar and Guelman8 present a similarly optimal evasion strat-
egy against a short-range PN missile with a simpli� ed model,
whereas Ong and Pierson9 study optimal evasion of a surface-to-
air PN missile with a slightly simpli� ed model. Although some of
the papers deal with quantitative evasion strategies, the results can
be used in assessing the largest effective shooting distance as well.

Nevertheless, a general tendency seems to be toward better guid-
ance schemes because most existing feedback laws are nonoptimal
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with excessive target maneuvers,10;11 long launch distances,12 and
large initial deviations from the collision course.1 If the guidance
law of the missile is unknown,pursuit– evasiongames providea pos-
sibility to estimate the capture set under the worst-case assumption
on the guidance law of the missile.

Isaacs3 providesa uni� ed procedurefor solvinga pursuit– evasion
game of kind by identifying the barrier, a surface that envelops
the initial states leading to a capture. Shinar et al.1 and Green
et al.13 apply the approach of Isaacs to a simpli� ed short-range
missile scenario. Le Menec and Bernhard14 use a similar model
for barrier computation in an expert system for air combat. To al-
low solutions in closed form, the models assume coplanarity of the
players and constant velocity of the evader. Unfortunately, these
assumptions lose their validity as the duration of the encounter
increases.

For game models that do not allow analytical solutions,a numer-
ical solution scheme is needed.Grimm and Schaeffer2 approximate
the barrier by assuming more realistic vehicle models, but a near
optimal feedback control for the evader, and optimize the farmost
point from which a capture is still possible. Breitner et al.15;16 have
investigated the determination of the barrier with slightly simpli-
� ed point mass models in the vertical plane. The approach is based
on the numerical solution of the necessary conditionsof the saddle
point trajectories on the barrier.

In this paper, we consider rather realisticallymodeled � ight vehi-
cles maneuveringin three dimensions. Instead of solving the neces-
sary conditions of a game of kind, we construct an auxiliary game
of degree with the shooting range as the payoff and show that the
open-loop representationof a feedbacksaddle point solution of this
game satis� es the necessary conditionsof a barrier saddle point tra-
jectory. This is equivalentwith the fact that the initial state obtained
by solving the auxiliary game of degree lies on the barrier.

Points on a submanifold of the barrier, corresponding to partly
� xed initial states of the players, are obtained by varying the initial
geometry of the encounter and by repeatedly solving the auxiliary
game of degreeby a numericaldecompositionmethod introducedin
Ref. 17. In Ref. 18, the method is interpreted in a bilevel program-
ming framework, the conditions for its convergence are stated, and
the method is applied to a complex missile–aircraft pursuit– evasion
game of degree. Comparison of the solutions with those obtained
via an indirect approach shows an excellent agreement. In Ref. 19,
the method is applied to a pursuit– evasiongame modeling the visual
identi� cation procedure of an unknown aircraft.

The main advantageof this method is that the solution is obtained
without explicitly stating or solving the necessary conditions of a
saddle point. Instead, two optimal control problems are solved it-
eratively using discretizationand nonlinear programming, until the
saddle point has been found. Hence, the method offers an easy and
rapid treatment of complex game models. To the author’s knowl-
edge, three-dimensionalcapture set computationwith present mod-
els has not been reported earlier.
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The paper is organized as follows: First, the dynamics of the
players are introduced. The game of kind is then formulated, the
necessary conditions of a barrier trajectory are brie� y given, and
the barriersubmanifoldsof interestaredescribed.Next, theauxiliary
game of degree is formulated, and it is shown that a solution to
the auxiliary game satis� es the necessary conditions of a barrier
trajectory. The decomposition method for the game of degree is
presented before numerical examples and concluding remarks.

Game Dynamics
In the following, the missile is identi� ed with the pursuer P and

the aircraft with the evader E . Both P and E maneuver in three
dimensions. We make the following simplifying assumptions:

1) The thrust and the drag forces, as well as the velocity vectors,
are assumed parallel with the reference line of the vehicles.

2) The lift force is assumed to be orthogonal to the velocityvector
and to point upward in the frame of reference of either vehicle.

3) The inertias of the � ight vehicles are assumed negligible.
4) The coordinate frame assumes a � at Earth.

Then, the equations of motion are

Pxi D vi cos °i cos Âi (1)

Pyi D vi cos °i sin Âi (2)

Ph i D vi sin °i (3)

P°i D
g

vi
.ni cos¹i ¡ cos °i / (4)

PÂi D
g

vi

ni sin¹i

cos °i
; i D P; E (5)

PvP D 1
m P .t/

fTP .t/ ¡ DP [hP ; vP ; M .hP ; vP /; nP ]g ¡ g sin °P (6)

PvE D 1
m E

f´E TE ;max[hE ; M.hE ; vE /]

¡ DE [hE ; vE ; M.hE ; vE /; nE ]g ¡ g sin °E (7)

The state of the game is described by the state vector

z D [z0
P ; z0

E ]0 D [xP ; yP ; h P ; °P ; ÂP ; vP ; xE ; yE ; hE ; °E ; ÂE ; vE ]0

(8)

The subscripts P and E refer to the pursuer and evader, respec-
tively, and the prime denotes a transpose. The state variables xi , yi ,
h i , °i , Âi , and vi , i D P; E , are the x and y coordinates, altitudes,
� ight-pathangles,headingangles,and velocitiesof the players.The
term shooting range that is used throughout the paper refers to the
quantity f[xP .0/ ¡ xE .0/]2 C [yP .0/ ¡ yE .0/]2g1=2, that is, the ini-
tial distance of the players in the xy plane.

The � ight directionof the vehicles is controlledwith the load fac-
tors nP and nE and the bankangles¹P ; ¹E 2 [ ¡¼; ¼ ]. The velocity
of E is controlled by the throttle setting ´E 2 [0; 1] that selects the
fraction of the maximal available thrust force TE ;max[h; M .h; v/],
where M is the Mach number. The pursuer’s thrust force TP .t/ is
in general a � xed function of time that cannot be controlled. The
masses of the vehicles are denoted by m P and m E and the gravita-
tional acceleration by g.

The drag forces of E and P are assumed to obey a quadraticpolar
(we suppress the subscripts for brevity),

D[h; v; M .h; v/; n] D CD0 [M.h; v/]Sq.h; v/

C n2CDI [M.h; v/]
.mg/2

Sq.h; v/
(9)

where CD0 .¢/ and CDI .¢/ are the zero drag and induced drag coef� -
cients, S is the reference wing area, and q.h; v/ D 1=2%.h/v2 is the
dynamic pressure. The air density %.h/ and the Mach number are
computed using the internationalstandard atmosphere.

The load factors nP and nE cannot be chosen freely. At low ve-
locities, a large load factor requires a large angle of attack, which
results in loss of lift force and stall. At higher velocities, the magni-
tudes of the load factors are constrainedby the largest accelerations
that the � ight vehicles and the pilot tolerate. Here, the bounds are
approximated by the box constraints

n P 2 [0; nP;max] (10)

nE 2 [0; n E;max] (11)

To summarize, we require that the players’ control vectors uP .t/
and uE .t/ satisfy

uP .t/ :D [nP .t/; ¹P .t/]0 2 SP :D [0; n P;max] £ [¡¼; ¼ ] (12)

uE .t/ :D [nE .t/; ¹E .t/; ´E .t/]0 2 SE :D [0; nE;max]

£ [¡¼; ¼ ] £ [0; 1] (13)

In addition, the players have to stay in their � ight envelopes. For
the evader, the boundariesof interest are the minimum altitude con-
straint

h E ¸ h E;min (14)

and the dynamic pressure constraint

q.hE ; vE / · qE ;max (15)

The pursuer must obey the minimum altitude constraint

hP ¸ h P;min (16)

Game of Kind
Let us assume that the players, obeying Eqs. (1–7) and (12–16)

have perfect information on the state of the game. In the game of
kind, as de� ned by Isaacs,3 the objectiveof the pursuer is to enforce
the capture, whereas the objective of the evader is to avoid it. A
capture occurs when z.t/ enters a target set 3. In this paper, 3 is
de� ned as a set of points where the distanceof the players is smaller
than a given capture radius d . The boundary @3 of 3 is given by
the terminal manifold or capture condition

l[zP .T /; zE .T /] D [xP .T / ¡ xE .T /]2 C [yP .T / ¡ yE .T /]2

C [h P .T / ¡ hE .T /]2 ¡ d2 D 0 (17)

The capture condition also implicitly speci� es the terminal time T .
The solution of a game of kind is the set of all admissible initial
conditionsz.0/ D z0 from which the pursuer can achieve the capture
against any admissible control of the evader. If there exists another
set of initial states from which the pursuer cannot enforce the cap-
ture, the two sets (excluding the interior of 3) are separated by a
piecewise continuouslydifferentiablehypermanifoldcalled the bar-
rier. The barrier is a collection of saddle point solution trajectories,
also termed as barrier trajectories, that satisfy

max
uE

min
uP

d
dt

l[z.T /] D 0 (18)

(see Refs. 3 and 15). An in� nitesimal change of the initial state or
a deviation of either player from the optimal strategy on the barrier
immediately results in a capture or escape. Instead of an exhaustive
search in the state space, the game of kind can be solved by de-
termining the barrier, or equivalently, the saddle point trajectories
forming it.

Note that in thepresentproblemthe functionallimitsof themissile
can give rise to additional capture set boundaries. For example, a
proximity fuse may require a certain minimum launch distance.
These boundaries,however, are not explored here.
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Necessary Conditions of a Barrier Trajectory
The necessaryconditions,satis� ed by a barrier trajectory,consist

of the 1) equationsof motion, 2) controland state variable inequality
constraints,3)optimal controlsof the players that minimaximize the
Hamiltonian of the game at each time instant, 4) adjoint differential
equations, 5) interior point conditions for the transitions from one
solutionarc to another,6) jumpconditionsfor the adjoint trajectories
at some of the transitions,7) terminal condition,and 8) initial values
of the state variables and � nal conditions for the adjoint variables.

The initial state is selected so that condition (18) holds. The � nal
conditions of the adjoint variables are given as

¸.T ¤/ D ®
@

@z
l[z¤.T ¤/] (19)

where ¸.t/ is the adjoint vector, ® is a positive multiplier, and the
asterisk denotes a saddle point solution trajectory that results when
both players apply their optimal saddle point strategies.

For the game at hand, the condition (1) is given by Eqs. (1–7),
condition(2) by Eqs. (12–16), and condition(7) by Eq. (17). The ex-
plicit form of conditions (3–6) is not needed here, but can be found,
for example, in Ref. 20 and the literature cited therein. Condition
(18) gives

d
dt

l[z¤.T ¤/] D @l

@z
[z¤.T ¤/] ¢ Pz¤.T ¤/ D 0 (20)

Differentiating l.¢/, given by Eq. (17), and substituting the relevant
components of Pz.t/, given by Eqs. (1–3), result in the following
constraint for the � nal � ight-path angles, heading angles, and the
velocities of the players (we suppress the asterisks for brevity):

vP .T / D vE .T /
1x cos°E .T / cos ÂE .T / C 1y cos °E .T / sin ÂE .T / C 1h sin °E .T /

1x cos °P .T / cosÂP .T / C 1y cos°P .T / sin ÂP .T / C 1h sin °P .T /
(21)

where 1x D xP .T / ¡ xE .T /, 1y D yP .T / ¡ yE .T /, and 1h D
h P .T / ¡ hE .T /. The � nal conditions of the adjoint variables (19)
yield

¸x P .T ¤/ D ¡¸xE .T ¤/ D 2®
£
x¤

P .T ¤/ ¡ x¤
E .T ¤/

¤
(22)

¸yP .T ¤/ D ¡¸yE .T ¤/ D 2®
£
y¤

P .T ¤/ ¡ y¤
E .T ¤/

¤
(23)

¸h P .T ¤/ D ¡¸hE .T ¤/ D 2®
£
h¤

P .T ¤/ ¡ h¤
E .T ¤/

¤
(24)

In addition,

¸vP .T ¤/ D ¸vE .T ¤/ D 0 (25)

¸°P .T ¤/ D ¸°E .T ¤/ D 0 (26)

¸ÂP .T ¤/ D ¸ÂE .T ¤/ D 0 (27)

because the correspondingstate variables are free at t D T ¤.

Barrier Submanifolds
In principle,the barrier could be identi� ed by integratingthe nec-

essaryconditions(1–8) backwardin time, startingfrom the transver-
sality conditions (22–27) and every point satisfying condition (18)
on @3 (Ref. 3). Nevertheless, the barrier is an 11-dimensional hy-
permanifold in the 12-dimensionalstate space, and its construction
as such would be a formidable task.Besides,many initial states, like
the ones where the pursuer is initiallyheadingaway from the evader,
hardly bear any practical signi� cance.Therefore,we concentrateon
a submanifold of the barrier.

Because the atmosphereis assumed laterallyhomogenous,we � x

xE .0/ D yE .0/ D 0 (28)

For the same reason, we can � x

yP .0/ D 0 (29)

and letÂE .0/ vary.Consequently,the shootingrange is simply given
by xP .0/. Because we anticipate long solution times, transients re-
lated to the initial � ight-path angle of the evader are considered
negligible, and we use

°E .0/ D 0 (30)

To further decrease the dimension, we � x the initial velocity and
altitude of the evader and the initial velocity of the pursuer:

vE .0/ D vE ;0; h E .0/ D hE;0 (31)

vP .0/ D vP;0 (32)

In the computations they will be treated as parameters. Finally, we
let the pursuer select its initial � ight-path angle and heading angle
freely,

°P .0/ D ° ¤
P .0/ (33)

ÂP .0/ D Â ¤
P .0/ (34)

Conventionally,one would assume that at the moment of the launch
the target has to be in the visual � eld of the missile’s sensor mech-
anisms, dictated by the initial direction of the missile. This would
give rise to an initial condition of the form

k[xP .0/; h P .0/; °P .0/; ÂP .0/] · 0 (35)

Nevertheless, because most long-range missiles nowadays can
download midcoursenavigation information from an aircraft that is

even not necessarily the launching one, constraining is considered
unnecessary.The additional necessary conditions corresponding to
Eqs. (33) and (34) are

¸°P .0/ D ¸ÂP .0/ D 0 (36)

The resulting submanifold of the barrier lies in the intersection of
the hyperplanes (28–32) and the manifolds (33) and (34) and is two
dimensional. It speci� es the maximal shooting range x¤

P .0/ > 0 as a
functionof the initialgeometrydescribedbyh P .0/ andÂE .0/. To de-
termine the x¤

P .0/ correspondingto h P .0/ D h P;0 and ÂE .0/ D ÂE;0,
one could, for example, solve the multipoint boundary value prob-
lem resulting from the necessary conditions (1–8) numerically (see
Refs. 15 and 16). In the following, however, we develop an alterna-
tive approach that utilizes the decomposition method described in
Ref. 17.

Auxiliary Game of Degree
That the total impulse of the missile is � nite allows one to set up

a game of degree with the shooting range as the payoff. Let us, in
addition to Eqs. (28–32), � x also h P .0/ D hP;0 and ÂE .0/ D ÂE;0.
Consider then the game

max
uE

min
uP ;xP .0/;°P .0/;ÂP .0/

¡ ·».T / (37)

PzP D fP .zP ; uP ; t/

zP .0/ D [xP .0/; 0; h P;0; vP;0; °P .0/; ÂP .0/]0 (38)

PzE D fE .zE ; uE /; zE .0/ D [0; 0; h E;0; vE;0; 0; ÂE ;0]0 (39)

P» D 0; ».0/ D xP .0/ (40)

uE .t/ 2 SE ; uP .t/ 2 SP (41)

hE .t/ ¸ hE ;min; h P .t/ ¸ h P;min (42)
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q[h E .t/; vE .t/] · qmax (43)

l[z.T /] D 0 (44)

The payoffis alwaysnegativebecausethe scalingfactor· is positive.
The dummy state ».t/ is introduced to transform the initial state
payoff into a theoreticallymore sound terminal state cost function.
The absolute value of ».T / equals the shooting range. The state
equations (38) and (39) are as in Eqs. (1–7).

We now postulate that a solution that satis� es the necessary con-
ditions of a saddle point of the auxiliary game of degree also satis-
� es the necessary conditionsof a barrier trajectory.Checking this is
straightforwardfor the items 1–7 on the list in the precedingsection,
assuming that the switching structure of the solution of the game of
degree coincides with that of the barrier trajectory associated with
the computed initial state. For item 8, we note the following. The
� nal conditions of the adjoint variables in the game of degree are

¹x P . QT / D ¡¹xE . QT / D 2¯[ QxP . QT / ¡ QxE . QT /] (45)

¹yP . QT / D ¡¹yE . QT / D 2¯[ QyP . QT / ¡ QyE . QT /] (46)

¹h P . QT / D ¡¹hE . QT / D 2¯[Qh P . QT / ¡ QhE . QT /] (47)

¹vP . QT / D ¹vE . QT / D 0 (48)

¹°P . QT / D ¹°E . QT / D 0 (49)

¹ÂP . QT / D ¹ÂE . QT / D 0 (50)

¹» . QT / D ¡· (51)

where ¹.t/ is the adjoint vector and .»»/ refers to the solution of the
game of degree. Conditions (45–50) coincide with conditions (22–

27). Obviously, ¹°E .0/ D ¹ÂE .0/ D 0, which yields condition (36).
Note that condition (51) is not totally decoupled; by the use of
calculus of variations, it is rather easy to show that the initial
condition (40) implies ¹» .0/ D ¡¹xP .0/. Because both ¹» .t/ and
¹xP .t/ are constant, ¹» . QT / D ¡· D ¡¹x P . QT /. On the other hand,
¹xP . QT / should satisfy condition (45). Nevertheless, as long as
QxP . QT / > QxE . QT /, then · > 0 can be selected freely without affect-
ing the solution. In the computations of this paper the assumption
holds.

Finally, substituting Eqs. (45–51) to the necessary condition

QH [Qz. QT /; QuP . QT /; QuE . QT /; ¹. QT /; Q». QT /; QT ]

PD ¹0. QT /ffP [QzP . QT /; QuP . QT /; QT ]0; fE [QzE . QT /; QuE . QT /]0g0

C ¹» . QT / ¢ 0 D 0 (52)

of the game of degree and canceling the common factor ¯ > 0
show that Qz. QT / satis� es condition(21). This concludesthat Qz.t/, t 2
[0; QT ], satis� es thenecessaryconditionsof a barriertrajectory.Espe-
cially the initial states QzP .0/ D [ QxP .0/; 0; h P;0; vP;0; Q°P .0/, QÂP .0/]0

and zE .0/ D [0; 0; hE ;0; vE;0; 0; ÂE;0]0 belong to the barrier. Thus,
the maximal shooting range x¤

P .0/ corresponding to h P .0/ D h P;0

and ÂE .0/ D ÂE;0 on the barrier submanifoldde� ned earlier is given
by QxP .0/. Parts of the submanifoldcan now be produced by system-
atically varying hP .0/ and ÂE .0/ and solving the game of degree
(37– 44) repeatedly.Different submanifoldsare obtainedby varying
vE ;0, hE;0, and vP;0 in Eqs. (31) and (32). In this way, for example,
the effect of the initial velocity of the evader on the shooting range
can be assessed.

Solving the Game of Degree
The approachjust presented is computationallyintensivebecause

the auxiliary game of degree has to be solved numerous times from
differentinitialconditions.Indirectmethodsthat solve thenecessary
conditions of a saddle point solution could be used, but the small
domain of convergence and the need to specify the sequence of
unconstrained, constrained, and singular solution arcs correctly in

advancecause practicalproblems. Furthermore, the work needed in
deriving the necessaryconditionsshould not be underestimated(for
an example, see Ref. 20).

A new solution method is presented in Ref. 17. It is based on
the fact that, for games where the payoff is terminal and the state
equation and the control as well as state variable inequality con-
straints are separable in players’ control and state variables, the
necessary conditions are coupled only at t D T through the payoff
and the capture condition.Obviously, the auxiliarygame of the pre-
ceding section falls into this category. In the method, the solutionof
the necessary conditions is decomposed into two subproblems that
are solved iteratively. The subproblems are optimal control prob-
lems, and in the end of the iteration, the necessary optimality con-
ditions of these problems coincide with the necessary conditionsof
the saddle point solution.

The subproblemscan be solved with any direct or indirect trajec-
tory optimization approach. The actual motivation behind the de-
composition is, however, that with a suitable discretizationscheme
the subproblems can be transformed into nonlinear programming
problems. For a review of different discretization schemes, see
Ref. 21. The necessary conditions are then not directly involved
in the solution process, but the solution, together with the Lagrange
multipliers of the problem, approximates the control, state, and ad-
joint trajectorieswith an accuracy that dependson the discretization
grid and the order of the discretizationmethod.

In the following we describe the method when applied to the
preceding auxiliary game. From the computational point of view,
the dummy state variable » is void. For clarity, we eliminate it and
consider directly the minimaximization of xP .0/.

Assume that the pursuit– evasion game admits a saddle point in
feedbackstrategies.Then, an open-looprepresentationof a feedback
saddle point trajectory can be computed by solving the maxmin
problem

max
uE

min
uP ;x P .0/;°P .0/;ÂP .0/

¡ xP .0/ (53)

PzP D fP .zP ; uP ; t/

zP .0/ D [xP .0/; 0; h P;0; vP;0; °P .0/; ÂP .0/]0 (54)

PzE D fE .zE ; uE /; zE .0/ D [0; 0; hE;0; vE;0; 0; ÂE ;0]0 (55)

uE .t/ 2 SE ; uP .t/ 2 SP (56)

hE .t/ ¸ hE ;min; h P .t/ ¸ h P;min (57)

q[h E .t/; vE .t/] · qmax (58)

l[zP .T /; zE .T /] D 0 (59)

To obtain the maxmin solution, we set up an iteration, where the
pursuer’s minimization problem is solved with a � xed current tra-
jectory of the evader. The evader’s trajectory is then improved by a
feasible step, and the process is repeated until convergence.

Let us � rst consider the pursuer’s minimization problem

min
uP ;xP .0/;°P .0/;ÂP .0/;T

¡ xP .0/ (60)

PzP D fP .zP ; uP ; t/

zP .0/ D [xP .0/; 0; hP;0; vP;0; °P .0/; ÂP .0/] (61)

uP .t/ 2 SP ; h P .t/ ¸ h P;min (62)

l
£
zP .T /; z0

E .T /
¤

D 0 (63)

where z0
E .t/, t ¸ 0 is a � xed trajectoryof theevaderand l.¢/ is de� ned

as in Eq. (17). Let the solution trajectory be NzP .t/ and the � nal time
NT and denote the capture point z0

E . NT / by Ne. Now, NzP .t/ is also an
optimal trajectory for the problem where the evader’s trajectory is
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replaced by the � xed point Ne and the � nal time is � xed to NT . In the
neighborhoodof.Ne; NT / de� ne

V .e; T/ D min
uP ;x P .0/;°P .0/;ÂP .0/

f¡xP .0/ j PzP D fP .zP; uP; t/; t 2 [0; T ];

zP .0/ D [xP .0/; 0; h P;0; vP;0; °P .0/;

ÂP .0/]; uP .t/ 2 SP ; h P .t/ ¸ h P;min;

l[zP .T /; e] D 0g (64)

The maxmin problem (37– 44) is equivalent to maximizing V .e; T /
subject to the evader’s constraints.This problem is dif� cult to solve
because V .¢/ cannot be expressed analytically. We, therefore, ap-
proximate the solutionthat maximizesEq. (64) with a solution to the
problemwhere the � nal time is � xed to NT , and V .e; NT / is linearized
in the neighborhoodof Ne. This problem can be stated as

max
uE

@V

@e
.Ne; NT /[zE . NT / ¡ Ne] (65)

PzE D fE .zE ; uE /; t 2 [0; T ]; zE .0/ D zE0 (66)

uE .t/ 2 SE ; hE .t/ ¸ h E;min; q[h E .t/; vE .t/] · qE ;max

(67)

where the gradient is a row vector. Basic sensitivity results applied
to V (see Refs. 17 and 18 and the references cited therein) imply
that the gradient of V with respect to e at .Ne; NT / is given by the
analytical expression

@

@e
V .Ne; NT / D

¡@

@e
xP .0/ C N®

@

@e
l[NzP . NT /; Ne] D N®

@

@e
l[NzP . NT /; Ne]

(68)

where N® is the Lagrange multiplier associated with the capture
condition(63) in the solutionof the minimization problem (60–63).
In this game,

@

@e
l[NzP . NT /; Ne] D ¡2 f[ NxP . NT / ¡ NxE . NT /]; [ NyP . NT / ¡ NyE . NT /];

[Nh P . NT / ¡ NhE . NT /]g0 (69)

Denote the solution trajectory of Eqs.(65–67) by z1
E .t/, t 2 [0; NT ].

Also denote T 1 D NT . One iteration is completed by extendingz1
E .t/,

for example, linearly as

z1
E .t/ D

»
z1

E .t/; t · T 1

z1
E .T 1/ C Pz1

E .T 1/.t ¡ T 1/ t > T 1
(70)

The extension is needed because, in general, if convergence has
not yet been achieved, T k C 1 can be larger than T k . The extended
solutionis then insertedto theminimizationproblem(60–63), which
is solved anew to locate the new capture point and to compute the
linear approximation of V .¢/. The iteration is continued until the
relative change in V .¢/ becomes less than a prescribed value. To
summarize, the iteration proceeds as follows:

1) Fix an initial trajectoryz0
E .t/; t ¸ 0 of evaderandsolveproblem

(60–63). Obtain NzP .t/, Ne, NT , and N®. Set k :D 1.
2) Solve problem (65–67) using Ne, NT , and N® to obtain zk

E .t/.
3) Insert the extended solution zk

E .t/ of problem (65–67) into
Eqs. (60–63) and solve to obtain NzP .t/, Ne, NT , and N®. If the rela-
tive change of the payoff is smaller than the prescribed accuracy,
terminate. Otherwise, set k :D k C 1 and go to step 2.

In Ref. 17, it is shown that when the method converges, the solu-
tionsatis� es thenecessaryconditionsof anopen-looprepresentation
of a feedback saddle point on regular solution arcs and on such sin-
gular arcs that involve only one of the players. There are, however,
certain singular surfaces, such as the equivocalsurface (see Ref. 3),
that involve both players and couple the necessary conditions be-
fore the termination of the game. These surfaces require additional

necessary conditions to be satis� ed that cannot be expressed as the
optimalityconditionsof the subproblems.The maxminsolutionthen
differs from the saddlepoint solution(see Ref. 17 and the discussion
in Ref. 18). Although it is in practice impossible to prove exactly,
we can rather safely assume that the solution of the present game
does not involve such surfaces.

In the approach just described, the saddle point problem is � rst
decomposed, and the subproblems are discretized. In Ref. 18, the
saddle point problem is � rst discretizedand then solved using a fea-
sible direction method. The discretizedproblem is identi� ed with a
bilevel programming problem (see Ref. 22 and the references cited
in Ref. 18) with the maximization as the upper level problem and
the minimizationas the lower level problem,and a feasibledirection
method with generally established convergence conditions is pro-
posed for solving the bilevel programming problem. The feasible
directionmethod turns out to be almost identicalwith the decompo-
sition method presented here, which provides an alternative inter-
pretation and conditions for the convergence of the decomposition
method as well.

Numerical Examples
In the following, we compute parts of the submanifolds of the

barrier corresponding to two initial altitudes and velocities of the
evader and one initial velocity of the pursuer. We use a generic
medium-rangeair-to-airmissilemodel.The thrustforceof therocket
motor is given by

TP .t/ D

(
TB ; 0 · t · 3 s
TS ; 3 < t · 15 s
0; t > 15 s

(71)

Consequently, the mass of the missile � rst decreases piecewise lin-
early and remains then constant. The mass of the evader is as-
sumed constant. The drag coef� cients of both vehicles are approxi-
mated by rational polynomials on the basis of realistic tabular data.
The data describing TE;max[h E ; M .hE ; vE /] is approximated by a
two-dimensional polynomial. We set nE ;max D 7, nP;max D 20, and
qE;max D 80 kPa. The evader’s data used in the numerical examples
represent a high-performance � ghter aircraft. For details, see liter-
ature cited in Ref. 20.

The subproblemsof the methodpresentedin theprecedingsection
are discretized using direct collocation.23¡25 In this approach, the
state trajectoriesbetween the gridpointsare approximatedby piece-
wise cubic polynomials. The control functions are approximated
piecewise linearly. The state trajectories are required to be contin-
uous and smooth in their � rst derivative. In addition, in the middle
of each interval, the slopes of the state trajectories are required to
coincide with the state rate at the same point.

The evader’s problem (65–67) is discretized using 40 equidis-
tant gridpoints. The discretization interval is then less than 5 s in
every problem, which is considered suf� cient on the basis of the
experience reported in Ref. 25. The pursuer’s problem (60–63) is
discretizedusing5, 10, and 25 points for the stagesof themissile, re-
spectively.The states and the controls are required to be continuous
at t D 3 and 15 s. With this grid, the maximal discretization inter-
val during the last phase is approximately 7 s, which is considered
suf� ciently small for a missile gliding near a quasi-stationarystate.
The testeddenserdiscretizationgrids increasethe computationtime
but do not produce signi� cantly different results.

The resulting nonlinear programming subproblems are solved
using the NPSOL26 library subroutine, which is a versatile imple-
mentation of sequential quadratic programming (for example, see
Ref. 27). The use of the Lagrangian merit function substantially
improves the convergence of the method from an almost arbitrary
infeasible initial point.To bring the decisionvariables into the same
magnitude, the discrete state and control variables of the subprob-
lems are scaled with the maximal value of the respective variable
appearing in the initial guess.

In each example, the pursuer’s initial velocity vP;0 is � xed to
300 m/s. The pursuer’s initial altitude is varied from h P;0 D h P;min

to 9000 m in 1000-m intervals. The initial heading angle of the
evader is varied from ÂE ;0 D 0 to 180 deg in 18-deg intervals. Here
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0 deg means a head on shoot and 180 deg a tail shoot. Note that the
situation is symmetrical for ÂE ;0 > 180 deg.

In the selected discretizationgrid, 10 £ 11 D 110 game problems
are solved for each combination of hE;0, vE;0 , and vP;0. The itera-
tion is terminated once the relative change in the shooting distance
becomes less than 0.5%.

Example 1
First, we study a case where the evader initially � ies at hE;0 D

3000 m with the initial velocity vE;0 D 400 m/s in level � ight. The
shooting ranges corresponding to different initial altitudes and lat-
eral aspect angles of the pursuer are shown in Fig. 1. Because of the
assumed lateral homogeneityof the atmosphere, rotating the initial
heading angle of the evader with a � xed initial position of the pur-
suer is equivalent to rotating the initial position of the pursuer with
a � xed initial direction of the evader. In Fig. 1, the evader’s initial
direction is � xed along the positive x axis.Missiles � red from inside
the shown manifold with the speci� ed initial velocity will reach the
aircraft regardless of the aircraft’s actions, whereas missiles � red
from outside do not reach an optimally escaping aircraft.

Barrier saddlepoint trajectoriesof theplayers,relatedto thepoints
labeled A, B, and C in Fig. 1, are presented in Figs. 2, 3, and 4,
respectively. The corresponding loadfactors and evader’s throttle
settings are presented in Fig. 5. At point A, the pursuer is initially at
h P;0 D 50 m directly behind the evader, and the solution trajectories

Fig. 1 Visualization of the submanifold of the barrier computed in
Example 1.

Fig. 2 Barrier trajectories of the players related to point A in Fig. 1
(——) and the convergence history of the computation (– – – ); thick line
represents part of the barrier submanifold.

Fig. 3 Barrier trajectories related to point B in Fig. 1, together with the projections in the xy plane.

stay in the vertical plane. The evader starts in level � ight, but the
dynamic pressureconstraintsoon forces the evader to climb. Before
the capture occurs, the controls of the evader turn singular,which is
indicated by the throttle setting that receives values less than 1 (see
Fig. 5a). The pursuer climbs to the maximal altitude of 4.6 km and
capturesthe evaderat the altitudeof 3.7 km. The initialconstellation
is disadvantageousfor thepursuerbecausethe shootingrangeis only
7.4 km. The � nal time is 36.7 s.

Figure 2 also shows the convergence history of the solution
method. The initial guess of the evader’s trajectory is a straight line
in the initial altitude. Because the trajectory violates the dynamic
pressureconstraint,theoptimalshootingrangeof thepursueragainst
this trajectory is shorter than in the other solutions.After the � rst it-
eration,the maximal shootingrangedecreasesmonotonicallywithin
the numerical accuracy. A feasible initial estimate of the evader’s
trajectory could be constructed by guessing the components of the
gradient of V .¢/ and solving problem (65– 67) once.

The 0.5% accuracy in the shooting range is achieved after four
iterations, but to demonstrate the convergence we have in this ex-
ample used the accuracy of 0.005%, which is achieved after nine
iterations. Initiating the method with different initial trajectoriesfor
the evader leads to the same solution.The number of iterationsdoes
not heavily depend on the initial guess.

At point B, the pursuer’s initial altitude is h P;0 D 3000 m, and it
is 126 deg to the left of the evader’s initial direction. The evader
� rst turns away from the pursuer and climbs to avoid violating the
dynamic pressure constraint and to decrease the drag force. Again,
thecontrolsturnsingularin theend (Fig. 5b), but the relativeduration
of the singular arc is shorter. During the � rst 10 s, the bank angle of
the evader (not plotted) is around 60 deg and decreases then in the
next 10 s gradually to zero. The pursuer selects its initial heading in
such a way that no lateral turning is needed, and the optimal bank
angle is zero.

The pursuer climbs to the maximum altitude of 24.9 km. On one
hand, climbing brings the pursuer into a thin atmosphere where the
drag force is smaller than in lower altitudes. On the other hand,
climbing and trading kinetic energy into potential energy seems to
be the optimal way to reach the velocity of the maximal glide ratio
for the coasting phase. Qualitatively similar range optimal glide
trajectoriesfor an aircraft with an engine fault havebeen obtainedin
Ref. 28. The initial position B is more advantageousfor the pursuer
than the position A because the shooting range grows to 21 km and
the duration of the encounter to 145 s.

PointC refersto a headon shootfromh P;0 D 9 km. The initialstate
is on the dispersal surface of the evader, who must instantaneously
decide whether to turn left or right. Here, the evader turns right, al-
most 180 deg, and climbs simultaneously.The pursuerclimbs to the
altitudeof more than 34 km and then glidesdown to 10.5 km, where
the capture occurs, � ying altogether almost 150 km. The optimal
bank angles of the players are similar to the preceding solution.Be-
cause of the tactically superior position of the pursuer, the shooting
range is 64.9 km, and the duration of the encounter is 182 s.

A plot of the maximal shooting ranges correspondingto the pur-
suer’s differentinitialaltitudesanddirectionsof shoot is presentedin
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Fig. 4 Barrier trajectories related to point C in Fig. 1, together with the projections in the xy plane.

a)

b)

c)

Fig. 5 Barrier saddle point loadfactors of the players (——) and the throttle setting of the evader (– – – ) along trajectories related to points A, B, and
C in Fig. 1.

Fig. 6. The earlier discussedpoints A, B, and C are also shown. The
effect of the atmosphere is visible in the lower part of the manifold.
When the pursuer starts from a low altitude, it stays in the denser
part of the atmosphere during the � ight. As a result, the maximal
shooting range is relativelysmall. However,when the initial altitude
of the pursuer increases, it can reach thinner atmosphere, and the
maximal shooting range grows almost linearly with the initial total
energy of the pursuer.

When the pursuer is initially in a low altitude, the maximal shoot-
ing range clearly depends on the direction of the shoot. In higher
initial altitudes, however, the dependence is alleviated.An intuitive
explanation is as follows. In every case, and especially in a head on
shoot, the evader’s optimal strategy is to turn away from the pursuer
regardlessof the pursuer’s initial altitude,even though the turn itself
does not increase the distance to the pursuer. The duration of the
turn is roughly constant, whereas the terminal time increases with
the initial altitude of the pursuer. Thus, with the shooting directions
in front of the evader (headinganglesnear 0 deg) and with low initial
altitudes of the pursuer, the evader uses most of the available � ight
time in turning, whereas in solutions corresponding to high initial

altitudes of the pursuer, the fractionof the total time the evader uses
for turning is smaller.

In addition to turning away from the pursuer, the evader also
ascendsto avoidthedynamicpressureconstraintthatbecomesactive
toward the end of the encounter. The pursuer’s strategy is to climb
for the reasons discussed earlier. Consequently, the optimal initial
� ight-path angle of the pursuer is often more than 60 deg. Some
comparisons indicate that constraining the initial � ight-path angle
and headingangle such that the target is required to be within a cone
of visibilitywith an openingangle of 35 deg shows a decreaseof the
magnitude of 10% in the maximal shooting range. The difference is
mainly due to the momentarybut large loadfactorneeded to steer the
pursuer upward and laterally toward the � nal position of the evader.
Thus, the signi� cance of the free initial direction of the pursuer
seems to be noteworthy.

Example 2
In example 2, the initial velocity of the evader is decreased to

250 m/s. The maximal shooting range is presented as a function of
the pursuer’s initial altitudeand the directionof shoot in Fig. 7. Note
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Fig. 6 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 1; evader lies in the origin and � ies
to the right.

Fig. 7 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 2.

that with higher initialaltitudesof the pursuer, the maximal shooting
range grows less than 10% on the average when compared to the
preceding example. One would expect that the lower initial energy
of theevaderwould bemore advantageousfor the pursuer.The thrust
excess, that is, the differenceof the thrust force and the drag forceof
the evader is, however, largerwith lower velocities,and acceleration
to almost the same velocity as with the higher initial velocity takes
only a fraction of the terminal time. The velocity difference, thus,
becomes almost compensated in the � rst moments of the � ight. In
the lower parts of the barrier submanifold, the difference is larger
because the acceleration takes more than half of the total � ight
time. On the other hand, the largest possible shooting range for a
head-on shoot is smaller than in the precedingexample.The turning
performance of the evader is better at the lower initial velocity.

Example 3
Finally,we compute the maximal shootingranges for an evader at

h E;0 D 6000m with the initial velocityvE;0 D 400 m/s. The maximal

Fig. 8 Shootingrange as a function of the pursuer’s initial altitude and
the direction of the shoot in example 3.

shooting ranges are shown as functions of the pursuer’s initial alti-
tude and the direction of shoot in Fig. 8. The higher initial altitude
of the evader reduces the maximal shooting ranges. In the pursuer’s
initial altitudes of 2000–3000 m, the change is approximately 40%
compared to the � rst example. In altitudes 4000 m and above, the
difference varies between 10 and 15%, with 13% on the average.

Conclusions
We have presented a method to compute the capture set of a mis-

sile with given vehicle models under the assumption that both the
missile and the aircraft behave in the best possible way. Instead
of solving the necessary conditions of the corresponding game of
kind, an equivalent game of degree is set up. A submanifold of the
barrier in three dimensions is constructed by solving the game of
degree repeatedlywith suitably discretized initial states using a de-
composition method presented earlier. The necessary conditionsof
the game neednot be solvedexplicitly.The use of discretizationand
nonlinear programming in solving the subproblems of the decom-
position offers a tradeoff possibility between accuracy and solution
time. A coarse solution with only few discretization points can be
obtained fast for inspection, and, if desired, can be improved by
adding of reallocatingthe discretizationpoints. More ef� cient com-
putation could be achieved with optimization algorithms designed
especially for sparse problems and possibly parallelization.

The presented demonstrations show, as expected, that the maxi-
mal shooting range dependson the altitude differenceof the players
and, through the properties of the atmosphere, also on the absolute
initial altitude of the pursuer. The shape of the lower part of the no
escape envelope depends largely on the direction of the shoot, but
in the upper part this dependence is diluted.

The computations indicate that the shooting range is rather in-
sensitive to small changes in the evader’s trajectory. On one hand,
this means that a successful implementation of the evasive maneu-
vers is not crucially affectedby small variations.On the other hand,
because the maximization in the presented decomposition method
is essentially a � rst-order approach, it may suffer from convergence
dif� culties near such a � at optimum. Nonetheless, as pointed out in
Ref. 18, the maximizationproblem can be solved using any method
of nonlinearprogramming, includingsecond-orderalgorithms.An-
other possibility to obtain more accurateresults is to initiatean indi-
rect solution method with the obtainedsolution.The initial estimate
of the adjoint variables can be calculatedusing the Lagrange multi-
pliers of the converged subproblems.

The approach provides a way to assess the technical perfor-
mance of the vehicles in the worst possible case, which is important
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especially if the guidance law of the missile is unknown. It should
be noted, however, that in this paper the information pattern is un-
modeled and assumed perfect. Usually it is the aircraft that has
problems in receiving information on the missile. For example, de-
tecting a missile launch is a challenging task. If a missile can hide
itself, the largest possible shooting range thus becomes larger.
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